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Abstract It is shown that for tetrahedral and octahedral molecules the quantity
a Re/N 1/3 is quadratic in the ratio z/N , where Re is the equilibrium bond length, ze
is the central charge and N is the total number of electrons. Some scaling properties
for the ‘breathing’ force constant k are proposed for a series of 5 tetrachlorides.
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In early work [1] by one of us, a simplistic self-consistent central field model using
the Thomas-Fermi statistical method [1–3] was presented, motivated by the desire to
study scaling properties of a variety of tetrahedral and octohedral (T and O) molecules.
This prompted, much later, the study of Mucci and March [4] who proceeded, but now
by semiempirical analysis, to relate the nuclear-nuclear potential energy at equlibrium,
denoted throughout by Vnn , to the total number of electrons N in the molecule. Their
semiempirical result, which was, as is to be expected, subject to some relatively small
scatter, reads

Vnn = aN 5/3, (1)

where the contant a is given by Mucci and March [4].
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Returning to the model in [1], Vnn was related exactly to the equilibrium bond
length Re of a given T or O molecule by

Vnn = n(z + cn)e2

Re
. (2)

Here ze is the central charge, while ne is the total positive charge of all outer nuclei:
for example for SF6, z = 16 and n = 54, the total number of electrons N in the neutral
molecules treated throughout being evidently z + n. The constant c in Eq. (2) is

c = 3
√

6

32
≈ 0.23 (3)

for tetrahedral and

c = 1 + 4
√

2

24
≈ 0.28 (4)

for octahedral molecules. To avoid the simplistic model [1]—see also March and
Parr [5], let us next combine Eqs. (2) and (1) to reach the scaling prediction for the
equilibrium bond length Re entering Eq. (2) as

a Re

N 1/3 = c + (1 − 2c)
z

N
+ (c − 1)

( z

N

)2
. (5)

To find the maximum values of z/N for a Re/N 1/3 for the two cases T and O, we
differentiate Eq. (5) with respect to z/N to find

∂ a Re
N 1/3

∂ z
N

= 1 − 2c + 2(c − 1)
z

N
. (6)

a Re/N 1/3 plotted in Fig. 1 shows a maximum at z/N = (2c − 1)/2(c − 1). The
maximum value of a Re/N 1/3 is 1/(4(1 − c)) (≈0.31 for tetrahedral and ≈0.35 for
octahedral molecules). Experimental Re data [6] for some tetrahedral molecules are
shown in Fig. 2, and indeed there is only weak dependence on z/N paralleling (Fig. 1).

We want to turn to relate next the ‘breathing’ force constant k = ∂2 E/∂ R2|Re for
T and O molecules to Re. Turning back to the model [1], Bowers [7] fitted in this
oversimplistic model when heavy atoms like Cl and Br are in the outer positions (in
[1] Cl inner electrons were ‘compressed’ into nucleus), the scaling properies for the
Re given by the Thomas-Fermi model in [1], namely

Re = z−1/3d

(
n

z

)
, (7)
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Fig. 1 The quantity a Re/N 1/3 calculated from Eq. (5) for tetrahedral (lower curve) and octahedral (upper
curve) molecules against z/N , where Re is the equilibrium bond length in Å, ze is the central charge and
N is the total number of electrons

Fig. 2 The quantity Re/N 1/3 for tetrahedral molecules against z/N , where Re is the experimental equi-
librium bond length in Å, ze is the central charge and N is the total number of electrons

where Bowers wrote the approximate form to fit the numerical results in [1] as

d = const

(
n

z

)0.6

. (8)

Similarly for k, in [7] a fit was made to predictions from [1], of the form

k = z3g

(
n

z

)
, (9)
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Fig. 3 Experimental ‘breathing’ force constant k (in 105dyne/cm) for 5 tetrachlorides versus z/N

where

g = const

(
n

z

)−3.51

. (10)

Raising Re in Eqs. (7) and (8) to the power 6 and multiplying the result by k

6 ln Re = ln (z/k) + const (11)

is too strong a dependence on Re to agree with experimental ln k. Figure 3 therefore
presents experimental data [6] for k versus z/n for some tetrahedral molecules.

Amovilli et al. [8] essentially replaced the use of TF statistical theory in [1] by the
Hartree-Fock theory for the fullerenes C50, C60, C70 and C84 with ‘almost spherical’
C cages.

Denoting by n the number of C atoms, we summarize essentially their numerical
values for the above 4 cages in Table 1. The energy E(n, R) is shown in [8] to be well
represented by

E(n, R)

n
= ac + bcn1/2

R
+ ccn

R2 . (12)

The values of the constants ac, bc and cc can be found in [8]. The ‘law’ Re proportional
to n1/2 is essentially, a statement of constant surface area on the fullerene spheres per
C atom, as stressed for example in [8].

Following the discussion earlier on T and O molecules, let us briefly consider for
the case of the C cages the breathing force constant k = d2 E/d R2|Re . Using Eq. (12)
we readily find

1

n

d E

d R
= −bcn1/2

R2 − 2ccn

R3 (13)
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Table 1 Ground-state energies
per atom and equilibrium radii
Re in Å from [8] for almost
spherical C cages

n 50 60 70 84

E/n −37.59 −37.60 −37.59 −37.59

Re 3.278 3.582 3.865 4.256

Re/
√

n 0.463 0.462 0.462 0.464

and the equilibrium radius Re is evidently given by setting d E/d R = 0 to find

Re = −2ccn1/2

bc
. (14)

Finally, from Eq. (13) we readily obtain

1

n

d2 E

d R2 = 2bcn1/2

R3 + 6ccn

R4 (15)

and hence the breathing force contant k is given by

k = d2 E

d R2

∣∣∣∣
R=Re

= 2bcn3/2

R3 + 6ccn2

R4 . (16)

To relate k and Re, as we did above for the T and O molecules, let us use Eq. (14) in
Eq. (16) to find

k = b4
c

8c3
c
. (17)

So, the breathing force constant is predicted from the Hartree-Fock model of the
π -electrons (of course 1 per C atom) to be independent of Re and given by the known
constants bc and cc entering the energy equation (12).

Before summarizing, it is relevant to make a brief digression to relate to the lower
dimensionality example of planar ring clusters. The work of Amovilli and March [9] is,
essentially, the two-dimensional analogue of the Thomas-Fermi (TF) self-consistent
field treatment of [1].

Briefly then, the chemical potential μ, the same at every point in such a 2D cluster,
is in the TF method given by

μ = p2
F (r)

2m
+ V (r), (18)

where pF (r) is the maximum momentum at position r in this semiclassical treat-
ment, while V (r) is the self-consistent electrostatic potential. To complete the TF
method in the present example, the customary phase space arguments for 2D yield the
ground-state density n(r) as
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Fig. 4 Equilibrium radius (in Å) of the spheroidal boron cages against n1/2, where n is the number of
boron atoms. Triangles refer to ab initio computed values

n(r) = 2πp2
F (r)

h2 . (19)

Then to relate n and V we have the 2D Poisson equation, now in linear form when
Eqs. (18) and (19) are employed:

d2V (r)

dr2 + 1

r

dV (r)

dr
= 4V (r). (20)

This self-consistent equation (20) being linear in contrast to the 3D non-linear form
in [1], can be solved analytically in terms of Bessel functions.

Amovilli and March, following [1] made comparison with known results for H and
C planar ring clusters. Interesting semiquantitative agreement was found, from such
a crude model, particularly for the H clusters.

Amovilli and March [10] extended the simple model in [1] to boron cages using
Hartree-Fock calculations. These authors found that the equilibrium radius of the
spheriodal boron cages is proportional to the squareroot of n, the number of boron
atoms in the cluster. We have redrawn the result of [10] therefore in Fig. 4, to make
the above comment concrete.

In summary, the key result for T and O classes of molecules is Eq. (5). This shows
that the quantity a Re/N 1/3 is quadratic in the ratio z/N , where ze is the central charge
and N is the total number of electrons. As z/N tends to zero, this ratio tends to the
constant c, which is ≈0.23 and 0.27 for T and O molecules, respectively (see Eqs. (3)
and (4) for exact values of c). There is a maximum which occurs near z/N = 1/3. The
maximum value of a Re/N 1/3 is 1/(4(1 − c)). Then some scaling properties for the
’breathing force constant k are proposed for a series of 5 tetrachlorides, k correlating
well with a low-order polynomial in z/N .
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Attention is then shifted to ‘almost’ spherical C and B cages. As shown for C cages
C50, C60, C70 and C84 by Amovilli et al. [8], Re is proportional n1/2, where n is the
number of C atoms. Our arguments here suggest that the force constant k is either
independent of, or very insensitive to, the value of n. For B cages, as Amovilli and
March [10] demonstrate, Re = 0.471n1/2Å having the same n dependence as for the
four C cages discussed above.

Finally, planar ring clusters are briefly referred to, again in relation to scaling prop-
erties.
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